Formulasi Serum Antioksidan Kombinasi Ekstrak Buah Ceremai Dan Kulit Buah Semangka

Majalah Farmasetika, 6 (5) 2021, 398-408 https://doi.org/10.24198/mfarmasetika.v6i5.36080

Artikel Penelitian

Download PDF

Eneng Elda Ernawati*, Yunahara Farida , Shelly Taurhesia

Fakultas Farmasi, Universitas Pancasila. Jl. Srengseng sawah, Jagakarsa, Jakarta, Indonesia

*E-mail: eldaernawati090291@gmail.com

(Submit 11/10/2021, Revisi 01/11/2021, Diterima 26/11/2021, Terbit 10/12/2021)

Abstrak

Buah ceremai (Phyllantus acidus) mengandung, kuarcetin, mirisetin, pylantusol A, pylantusol B, asam sitrat, asam askorbat dan asam galat, sedangkan kulit buah semangka (Citrullus lanatus) mengandung retinol, tiamin, niacin, dan asam askorbat. Keduanya mengandung senyawa yang memiliki aktivitas antioksidan. Tujuan penelitian ini adalah membuat formula serum wajah dari kombinasi ekstrak buah ceremai dan kulit buah semangka serta menguji aktivitas antioksidannya. Buah ceremai dan kulit buah semangka dimaserasi dengan etanol 70%, pelarut diuapkan dengan evaporator. Masing-masing ekstrak diuji aktivitas antioksidan dengan metode DPPH. Ekstrak buah ceremai (EBC) dan kulit buah semangka (EKBS) dikombinasi ratio 1:1, 2:1 dan 1:2 dan dikembangkan formula serum wajah berdasarkan hasil kombinasi dengan aktivitas antioksidan terbaik. Ratio EBC dan EKBS (2:1) memberikan nilai IC50 terbaik yaitu sebesar 75,44 ppm. Serum F1 mengandung 0,76 g EBC dan 0,5 g EKBS sedangkan F2 adalah dua kali dari F1, komponen formula terdiri dari Xhantan Gum, Buthilen Glikol, Methylparaben dan Aquadest. Aktivitas antioksidan serum F2 memilki aktivitas terbaik dibandingkan serum F1 dengan nilai IC50 sebesar 326,71 ppm lebih baik dibandingkan dengan kontrol positif yaitu produk serum Vitamin C yang memiliki nilai IC50 816,65 ppm. Serum wajah F1 dan F2 berwarna coklat transparan, dengan aroma khas, pH serum F1dan F2 belum memenuhi standar SNI masing-masing sebesar 3,9 dan 3,7. Kedua formula serum memiliki kestabilan penyimpanan selama 3 bulan pada suhu 25oC dan 4o C. F2 menunjukkan adanya iritasi ringan pada kulit kelinci hal ini dipengaruhi oleh pH formula serum yang asam.

Kata Kunci

Citrrulus lanatus, DPPH, Serum, Phyllantus acidus

Pendahuluan

Kulit merupakan perlindungan paling luar dari tubuh dan jaringan kulit menjadi peran utama dalam pertahanan radiasi ultraviolet (1). Paparan radiasi UV merupakan penyebab utama stres oksidatif pada kulit sehingga menjadi faktor penyebab terjadinya masalah kulit seperti pembentukan keriput dan kanker (2). Salah satu cara pencegahan kerusakan kulit akibat stres oksidatif yaitu dengan melakukan perawatan kulit melalui penggunaan kosmetik yang mengandung antioksidan seperti lotion dan serum.

Serum merupakan sediaan kosmetik yang memiliki konsentrat tinggi dengan kemampuan penetrasi lebih dalam untuk menghantarkan bahan aktif ke dalam kulit (3). Senyawa fenolik dan flavonoid adalah golongan metabolit sekunder yang populer digunakan sebagai antioksidan(4). Buah ceremai (Phyllantus acidus) diidentifikasi mengandung senyawa, kuarcetin, pylantusol A, pylantusol B, asam sinamat, asam sitrat, asam askorbat dan asam galat (5). Buah Phyllantus acidus memiliki total fenolik sebesar 204,75 mg/g dan kandungan asam askorbat sebesar 102,58 mg/g (6). Ekstrak metanol buah Phyllantus acidus menunjukkan aktivitas antioksidan tinggi dengan nilai IC50 sebesar 16 ppm (7). Buah Phyllantus acidus diidentifikasi mengandung senyawa asam glikolat sebesar 27,77% dan asam sitrat sebesar 39,81% (8). Jus kulit Citrullus lanatus mengandung fenolat sebesar 18,702 mg/g dan antioksidan dengan nilai IC50 sebesar 214,369 ppm(9). Kulit buah Citrullus lanatus mengandung retinol, tiamin, niacin dan asam askorbat (10). Pada penelitian ini dilakukan pengembangan formula serum wajah antioksidan dari kombinasi ekstrak buah ceremai dan kulit buah semangka.

Metode

Alat

Alat yang digunakan dalam penelitian ini yaitu gelas laboratorium (Pyrex, Indonesia) spektrofotometer UV-vis (Shimadzu), viscometer (Brookfiled, USA), vaccum rotary evaporator (IKA RV 10, Germany), stirrer (Thermo, Korea), dehidrator (Kris).

Bahan

Buah cermai (Phyllantus acidus) dan kulit buah semangka (Citrullus lanatus) diperoleh dari kabupaten Pandeglang, Banten. DPPH (Sigma aldrich), xhantan gum (PT. Sheva Mutiara Jaya, Bandung), buthylen glikol (PT. Sheva Mutiara Jaya, Bandung) methylparaben (PT. Sheva Mutiara Jaya Bandung), aquades, etanol (PT. Palapa Muda Perkasa, Jakarta), metanol (PT. Palapa Muda Perkasa, Jakarta), kelinci albino newzealand (PT.Dunia Kaca, Tawamangu)

Prosedur Rinci

  1. Pengumpulan Bahan dan Determinasi Tanaman Bagian tanaman buah ceremai dan kulit buah semangka dideterminasi di Pusat Penelitian Tumbuhan dan Kebun Raya LIPI Bogor. Buah ceremai dan kulit buah semangka dibuat simplisia dengan cara sampel dikeringkan menggunakan alat dehidrator pada suhu 40oC.
  2. Prosedur Pembuatan Ekstrak Sampel dimaserasi dengan pelarut etanol 70% selama 3×24 jam (11) maserat dipekatkan dengan vaccum rotary evaporator. Ekstrak dihitung rendemennya
  3. UjiAktivitas Antioksidan Pengujian aktivitas antioksidan dilakukan mengikuti metode Pogaga (2020) dengan modifikasi (12). EBC dan EKBS, kombinasi EBC dan EKBS ratio perbandingan 1:1, 2:1, dan 1:2 dibuat deret konsentrasi (50,100,150,200 dan 250 ppm).Vitamin C sebagai kontrol positif. Konsenterasi serum F0, F1, F2 (40,80,160,320 dan 640 ppm) sedangkan serum komersial sebagai kontrol positif sebesar (62,5;125;250;500 ppm). Larutan uji dipipet 2,4 mL, dan dimasukan dalam tabung reaksi, ditambahkan DPPH 0,5 mM sebanyak 0,6 mL, diinkubasi pada ruang gelap selama 30 menit. Absorbansi masing-masing sampel diukur pada panjang gelombang maksimum pada penelitian ini adalah 515 nm, karena merupakan panjang gelombang yang memberikan serapan maksimum pada DPPH. Nilai IC50 dihitung berdasarkan nilai % inhibisi pada masing-masing sampel dan penentuan regresi liniernya.
  4. Formula Serum Antioksidan Formula serum wajah antioksidan dapat dilihat pada (Tabel 1). Formula kombinasi dibuat menjadi 2:1 berdasarkan hasil aktivitas antioksidan masing-masing ekstrak. Jumlah zat aktif adalah 50 kali lipat untuk (F1) dan 100 kali lipat untuk (F2) dari nilai IC50 Antioksidan. yang merupakan salah satu polimer golongan poliakrilat, dipilih sebagai pengental dan emulgator. Dari hasil penelitian ini diharapkan diperoleh formula krim dengan kandungan ekstrak daun kapuk yang efektif mengatasi jerawat dan stabil dalam penyimpan.

Tabel 1. Formula serum wajah antioksidan (13)

5. Pengujian Formula Serum 

a. Uji Organoleptis Uji organoleptik sediaan serum dilakukan dengan mengamati warna, bau, dan bentuk (14) 
b. Uji viskositas Sediaan dimasukkan ke dalam gelas piala kemudian spindel diturunkan hingga batas spindel tercelup ke dalam sediaan. Angka viskositas yang ditunjukkan oleh jarum merah dicatat, kemudian dikalikan dengan faktor koreksi pada tabel (15).
c. Uji pH Pengukuran pH formula diukur menggunakan pH meter dengan cara sampel disiapkan sebanyak 50 mL ke dalam gelas kimia. Elektroda pH meter dicelupkan pada serum dan hasil dibaca pada monitor (14) 
d. Uji Daya Sebar Masing-masing formula serum sebanyak 1 mL diletakan di atas cawan petri dan dibiarkan 1 menit, kemudian diberikan beba sebesar 50 g dan didiamkan kembali 1 menit hasil pengamatan diukur diameter sebarnya (12) 
e. Uji Homogenitas Masing-masing formula serum dioleskan pada sekeping kaca transparan, diratakan dan diamati apakah ada partikel atau tidak (16) 
f. Uji Stabilitas Stabilitas sediaan dievaluasi pada suhu 4oC ± 2oC, dan 25o ± 2oC selama 3 bulan. Stabilitas yang diamati meliputi organoleptis (warna, bau dan bentuk) visikositas, homogenitas, daya sebar dan pH (15) 
g. Uji Iritasi (17) Kelinci albino jantan New Zealand berat sekitar 2 kg. Hewan uji diaklimatisasi selama 7 hari, bulu kelinci daerah punggung dicukur seluas 10%. Formula serum yang terdiri dari F0, F1 dan F2 dioleskan pada bagian punggung kelinci dan diamati setelah pengolesan pada durasi 24,48 dan 72 jam. Kaji etik untuk uji iritasi diperoleh dari Komisi Etik Penelitian Kesehatan Universitas Muhammadiyah Prof. DR. HAMKA (KEPK-UHAMKA) nomor persetujuan etik No:02/22.03/0936.

Hasil

Hasil pengumpulan Bahan dan Determinasi tanaman

Berdasarkan hasil determinasi dengan Nomor B-1194/IPH.3./KS/X/2020 menyatakan spesies yang digunakan pada penelitian ini adalah Phyllanthus acidus dan Citrullus lanatus.

Hasil ekstraksi

Hasil ekstraksi buah ceremai dan kulit buah semangka dapat dilihat pada (Tabel 2)

Gelatin pada tulang ikan diperoleh melalui ekstraksi dengan pelarut yang sesuai. Berdasarkan literatur yang diperoleh analisis parameter fisikokimia gelatin tulang ikan. Parameter-parameter fisikokimia tersebut kemudian dibandingkan dengan standar SNI atau GMIA untuk memperoleh gelatin yang sesuai persyaratan cangkang kapsul. Berikut adalah beberapa hasil penelitian gelatin dari tulang ikan patin, tuna, dan nila.

Tabel 2. Hasil Penelitian dari Gelatin Ikan Patin, Tuna, dan Nila berdasarkan Sifat Fisikokimianya dan Perbandingan dengan Standar Gelatin (GMIA dan  SNI)

This image has an empty alt attribute; its file name is Tabel2LG-1.png

Parameter fisikokimia yang mempengaruhi kualitas gelatin diantaranya parameter pH, kadar air, kadar abu, kadar protein, kekuatan gel, dan viskositas. Parameter-parameter tersebut juga perlu dibandingkan dengan standar gelatin farmasi kapsul berdasarkan SNI 06- 3735-1995 atau standar internasional gelatin GMIA.

pH

Gelatin memiliki sifat asam (karboksil) dan basa (amino dan guanidin). Gugus asam amino pada gelatin memberikan karakteristik amfoter karena gugus fungsi asam amino, amino terminal dan gugus karboksil dibentuk selama hidrolisis larutan asam kuat, gelatin bermuatan positif dan bermigrasi sebagai kation di medan listrik. Dengan larutan alkali kuat, gelatin menjadi bermuatan negatif dan bermigrasi sebagai anion. Tidak ada migrasi yang terjadi di titik tengah ketika titik isoelektrik adalah nol.19

Pengukuran nilai pH gelatin penting dilakukan karena pH gelatin mempengaruhi sifat lainnya seperti viskositas dan kekuatan gel.20 Nilai kekuatan gel maksimal sedangkan viskositas minimal pada pH 5 yang menandakan pentingnya pH untuk sifat reologi. pH 5 dan pH 8 dipilih karena peleburan dan pembentuk gel suhu gel gelatin lebih stabil dalam kisaran pH 5–9 karena struktur yang lebih kuat. Gel harus harus memiliki struktur yang lebih kuat ketika pH jauh dari isoelektrik, sedangkan bila mendekati titik isoelektrik struktur lebih lemah.19 pH memengaruhi viskositas, semakin tinggi konsentrasi asam, semakin banyak maka kation asam yang terperangkap dalam ossein, sehingga pH akan rendah atau bersifat asam. Selanjutnnya, proses hidrolisis kolagen dilanjutkan dengan proses penguraian polimer kolagen.21 Ikatan hidrogen dengan air molekul dan gugus asam amino bebas penting untuk kekuatan gelatin. Perubahan pH juga dapat menaikkan dan menurunkan viskositas gelatin pada kisaran pH 6-8.22

Berdasarkan literatur hasil, gelatin ikan patin diperoleh pH gelatin 4,46, gelatin ikan tuna diperoleh 3,73-5,33, serta pH gelatin ikan nila adalah 5,83. Standar GMIA untuk gelatin farmasi adalah 4,5-6,5, sedangkan standar SNI sebesar 3,8-6,0. Pada ketiga penelitian gelatin ikan patin, tuna, dan nila dihasilkan pH yang memenuhi standar GMIA dan SNI.

Kadar Air

Kadar air didefinisikan sebagai jumlah kandungan air pada suatu bahan yang dapat dinyatakan dengan bobot basah dan bobot kering. Kadar air adalah parameter penting karena dapat menentukan penerimaan, kesegaran, pemerian, tekstur, rasa, mutu bahan, dan daya tahan bahan. Air terdapat dalam komponen intrasel atau ekstrasel suatu produk.23 Pengukuran kadar air bertujuan untuk mengetahui jumlah air yang terkandung dalam gelatin tulang ikan. Parameter kadar air penting untuk suatu produk karena kadar air dapat menentukan waktu simpan gelatin, hal ini karena air dapat menjadi media atau tempat pertumbuhan mikroba yang berperan dalam reaksi pembusukan atau penguraian bahan.12

Kadar air pada gelatin juga dipengaruhi oleh viskositas. Nilai viskositas atau kekentalan larutan gelatin memengaruhi kadar air dalam bentuk gelatin kering. Semakin kecil kadar air pada gelatin kering, maka akan semakin tinggi daya ikat air gelatin untuk membentuk gel. Semakin banyak jumlah air dalam bentuk terikat dengan gelatin, larutan akan semakin kental, sehingga nilai viskositas akan semakin tinggi.24

Berdasarkan tabel 1 nilai kadar air ikan patin, tuna dan nilai memenuhi persyaratan. Kadar air gelatin ikan patin 7,72±0,01%, kadar air gelatin tulang ikan tuna sebesar 11,85%, dan kadar air tulang ikan nila sebesar 9,30±0,33%. Nilai kadar air gelatin pada tiga tulang ikan memenuhi standar gelatin untuk sediaan cangkang kapsul berdasarkan SNI yaitu tidak melebihi 16%, sedangkan GMIA tidak mencantumkan persyaratan kadar air untuk cangkang kapsul.

Kadar Abu

Dalam suatu bahan baku selalu ada komponen organik dan anorganik.25 Komponen organik dapat hilang pada saat proses pembakaran, sedangkan komponen akan tersisa sebagai kadar abu.12,26 Penentuan kadar abu akan menunjukkan kemurnian suatu bahan.27 Kadar abu yang tinggi pada suatu bahan menggambarkan semakin banyak kandungan anorganik atau mineral yang terkandung pada bahan tersebut. Rendahnya kadar abu menunjukkan kualitas gelatin yang baik.25 Tingginya kadar abu dapat disebabkan oleh teknik dan alat penyaringan yang tidak sesuai, sebagaimana penelitian yang dilakukan sebelumnya.28,29 Pada saat pembentukan gelatin, tahap pre-treatment merupakan tahap yang berpengaruh terhadap kandungan mineral dari gelatin yang terbentuk. Karena pada tahap inilah terjadi proses demineralisasi untuk menghilangkan mineral sehingga didapat ossein.30

Lama perendaman, konsentrasi, dan jenis zat asam atau basa yang digunakan pada tahap pre-treatment ini pun dapat berpengaruh kepada proses pelepasan mineral yang terkandung dalam sampel.31 Kadar abu gelatin dapat diindikasikan sebagai kalsium. Tulang ikan pada umumnya memiliki kandungan kalsium yang cukup besar, kalsium akan bereaksi dengan asam atau basa dan membentuk ion kalsium yang larut. Tingginya kadar kalsium dalam gelatin akan mengurangi kejernihan sehingga gelatin yang dihasilkan cenderung keruh. Begitupun jika gelatin dijadikan bahan baku cangkang kapsul, maka kapsul yang dihasilkan tidak akan jernih.32

Kadar abu ketiga gelatin yang dihasilkan dari penelitian tersebut menunjukkan nilai yang bervariasi. Gelatin ikan patin dan ikan nila menunjukkan nilai masing-masing 0,38±0,08% dan 2,09% yang sudah sesuai dengan standar SNI, yaitu tidak melebihi 3,25%. Sedangkan untuk gelatin ikan tuna dengan kadar abu sebesar 8,12%, masih memiliki nilai kadar abu yang tidak sesuai dengan standar. Kadar abu melebihi batas standar SNI. Hal tersebut bisa terjadi karena proses ekstraksi yang kurang optimal, tahap demineralisasi, proses pencucian, penyaringan, atau kondisi bahan baku.13,32,33

Kadar Protein

Gelatin merupakan produk penguraian rantai panjang protein yang disebut kolagen. Gelatin yang dihasilkan dari hidrolisis kolagen memiliki kandungan protein yang tinggi.34 Kadar protein menunjukkan jumlah protein yang terkandung pada bahan baku.12 Kadar protein gelatin dapat dipengaruhi oleh konsentrasi penggunaan asam atau basa saat proses demineralisasi dan perendaman.30,35 Semakin besar konsentrasi asam, semakin lama waktu perendaman, dan tingginya suhu yang digunakan akan menurunkan kadar protein, karena semakin banyak protein dalam bahan baku yang terhidrolisis. Karena rantai polipeptida penyusun protein akan rusak dengan adanya perubahan pH dan suhu yang ekstrim.36,37 Kadar protein pun dipengaruhi oleh jenis ikan yang digunakan, bagian tubuh yang digunakan, usia, habitat, dan pakan yang diberikan.2,30,38

Berdasarkan hasil literatur dari penelitian (Tabel 1), didapatkan dua penelitian gelatin ikan tuna dan nila yang memenuhi syarat SNI dengan nilai masing-masing 80,90% dan 79,73–87,3%. Sedangkan, penelitian kandungan protein tulang ikan patin yang dilakukan oleh Pertiwi et al., (2018) dengan nilai 58,70±0,01%, tidak memenuhi standar yang ditetapkan SNI dengan rentang nilai 84-90%.

Kekuatan Gel

Kekuatan gel merupakan parameter fisikokimia dari gelatin yang dapat menentukan karakteristik dari gelatin, terutama mengingat fungsi gelatin adalah sebagai pengemulsi dan agen pembentuk gel.27 Konsentrasi gelatin 6,67% digunakan untuk melihat kekuatan gel dari suatu bahan baku gelatin. Bloom adalah satuan dari kekuatan gel. Bloom menunjukkan besarnya beban yang dibutuhkan sebagai sumber tekanan di daerah tertentu pada bagian muka sampel sejauh 4mm.Kekuatan gel gelatin atau bloom gel strength adalah salah satu karakteristik tekstur sebuah wujud benda dan merupakan gaya yang dibutuhkan dalam merubah bentuk tertentu.30

Faktor – faktor yang mempengaruhi kekuatan gel diantaranya bahan baku, perlakuan pertama, keadaan ekstraksi, panjang asam amino, pH, berat molekul, asam amino pembentuk gel dan suhu. Kekuatan gel akan semakin besar dan meningkat apabila gugus asam amino penyusunnya semakin panjang. Rantai asam amino akan semakin panjang serta padat apabila jumlah kolagen terhidrolisa banyak dan kemampuan penyerapan air yang dilakukan gelatin semakin besar.39 Apabila nilai pH sangat rendah maka kekuatan gel semakin kecil, karena terjadi hidrolisis lanjutan pada untai protein yang digunakan.24

Penguraian untai polipeptida semakin banyak terjadi pada suhu tinggi. Keadaan ini terjadi karena rantai peptida menjadi pendek akibat dari hidrolisis gelatin yang menyebabkan menurunnya kekuatan gel. Selain itu suhu yang tinggi (>75oC) akan menyebabkan gel rusak terdenaturasi dan akibatnya kekuatan gel rusak.40 Berat molekul yang besar menunjukkan asam amino penyusun rantai peptida berjumlah banyak dan berukuran besar sehingga penyusun rantai peptida akan menjadi lebih panjang. Semakin besar berat molekul gelatin maka kekuatan gel akan semakin besar. Glisin, prolin dan hidroksiprolin adalah asam amino penting yang mempengaruhi terbentuknya gel. Gelatin adalah polimer linier tersusun atas susunan 19 asam amino penting yang saling terikat dengan ikatan peptida. Susunan dari asam amino penting tersebut dapat berupa glisin-prolin, glisin-prolin-hidroksiprolin yang akan terus berulang.24

Berdasarkan hasil literatur dari ketiga penelitian (Tabel 1), didapatkan dua penelitian yaitu Masrukan et.al., (2018), dan Otto et al., (2015) yang memenuhi syarat SNI dengan nilai viskositas masing-masing 120,37±0,9 dan 78,12 – 86,47. Sedangkan pada penelitian Pertiwi et al., (2018) didapatkan kekuatan gel sebesar 364,19±0,04 gBloom. Nilai kekuatan gel pada penelitian Pertiwi et al., (2018) terbilang tinggi hal ini dikarenakan sampel diuji setelah melalui rangkaian prosedur pemekatan gel.

Persyaratan SNI untuk rentang nilai viskositas adalah 75 – 250 gBloom sedangkan persyaratan GMIA dengan rentang nilai 150 – 300 gBloom. Dari ketiga penelitian tersebut hanya penelitian dari Otto et al., (2015) saja yang memenuhi persyaratan dari GMIA.

Viskositas

Viskositas sangat berkorelasi dengan parameter yang dijelaskan sebelumnya yaitu kekuatan gel dan memiliki peran yang penting.38 Viskositas atau dapat disebut juga kekentalan didefinisikan sebagai kekuatan suatu cairan untuk berusaha tidak mengalir. Viskositas mempengaruhi terjadinya proses aliran suatu zat cair dibantu dengan adanya adsorbsi.27 Tujuan dilakukannya viskositas adalah untuk melihat kekentalan gelatin dalam bentuk larutan pada suhu dan konsentrasi yang ditentukan.39

Faktor-faktor yang mempengaruhi nilai viskositas adalah suhu, pH dan konsentrasi gelatin. Pada suhu yang tinggi sekitar lebih dari 40°C akan menyebabkan nilai viskositas menurun.10 Rantai asam amino akan terputus beriringan dengan konsentrasi gelatin yang meningkat, hal ini akan menyebabkan viskositas menurun.41 Asam akan berpenetrasi kuat pada saat konsentrasi asam yang digunakan tinggi dan menyebabkan ikatan kovalen antar asam amino terputus. Hal ini menghasilkan BM yang lebih rendah dengan rantai pendek sehingga viskositasnya bernilai rendah.42

Waktu perendaman yang semakin lama menyebabkan rendahnya nilai viskositas yang didapatkan, hal ini disebabkan putusnya rantai asam amino dari gelatin dan menyebabkan rantai menjadi lebih pendek. Nilai viskositas yang kurang baik dipengaruhi oleh struktur gelatin yang dimiliki oleh tulang ikan. Struktur gelatin mudah terdegradasi oleh panas sehingga semakin lama proses pemanasan maka struktur rantai gelatin yang dihasilkan akan semakin pendek. Rantai asam amino yang semakin pendek akan menyebabkan nilai viskositas semakin rendah.41

Viskositas bergantung juga kepada metode ekstraksi dan bahan yang digunakan untuk menghidrolisis gelatin tersebut. Contohnya adalah dari metode ekstraksi dengan menggunakan microwave didapatkan nilai viskositas yang rendah. Hal ini dikarenakan prinsip kerja dari microwave itu sendiri yang menyebabkan terjadinya pergerakan acak dari partikel yang menghasilkan panas. Akibat panas tersebut menyebabkan ikatan antar atom berubah menjadi tidak kuat dan terjadilah penurunan viskositas.43 Berat molekul (BM) suatu gelatin dipengaruhi juga oleh konsentrasi larutan asam.10

Berdasarkan hasil literatur dari penelitian (Tabel 1), didapatkan bahwa tiga penelitian tersebut yaitu penelitian dari Pertiwi et al., (2018), Masrukan et.al., (2018) dan Gugun et al., (2016) semuanya memenuhi syarat SNI serta GMIA dengan nilai masing-masing 3,83±0,08 cP, 4,75±0,06 cP dan 4,13±3,95 cP. Persyaratan SNI untuk rentang nilai viskositas adalah 2,5-5,5 cP sedangkan persyaratan GMIA dengan rentang nilai 2,5 – 4,5 cP.

Kesimpulan

Berdasarkan peninjauan pustaka, gelatin ikan berpotensi sebagai bahan dalam formulasi cangkang kapsul ditinjaukan dari sifat fisikokimianya. Gelatin ikan patin memenuhi persyaratan standar gelatin GMIA dan SNI berdasarkan pH, kadar air, kadar abu, dan viskositas. Namun, kekuatan gel dan kadar protein gelatin tulang ikan melebihi persyaratan. Sedangkan, gelatin ikan tuna dan nila memenuhi semua parameter fisikokimia gelatin GMIA dan SNI yaitu pH, kadar air, kadar abu, kadar protein, viskositas, dan kekuatan gel gelatin. Dengan demikian, gelatin ikan tuna dan nila memenuhi persyaratan fisikokimia untuk dijadikan bahan dalam pembuatan cangkang kapsul untuk sediaan farmasi.

Daftar Pustaka

  1. GMIA. Gelatin Handbook. USA: Gelatin manufacturers institute of america; 2012.
  2. Market Report. Global Gelatin Industry [diakses 12 April 2021].  Tersedia dari https://www.reportlinker.com/p05478473/Global-Gelatin-Industry.html?utm_source=GNW.
  3. Santosa H, Abyor H, Guyana, NL, Handono SF. Hidrolisa kolagen dalam ceker ayam hasil perendaman dengan asam asetat pada proses pembuatan gelatin. Gema Teknologi2018;20(1):32-36.
  4. Nhari RMHR, Ismail A, Che Man YB. 2012. Analytical methods for gelatin differentiation from bovine and porcine origins and food products. Journal of Food Science 2012;71(1).
  5. Depkes RI. Farmakope indonesia Edisi V. Jakarta: Kementerian Kesehatan RI;2014.
  6. Amila S. Stabilitas kadar dan laju disolusi ketoprofen dalam sediaan kapsul gelatin dan HPMC-karagenan. Prosiding Seminar Nasional Penelitian dan PKM Sains, Teknologi dan Kesehatan;2011 Desember 13;Bandung,Indonesia.Indonesia;Universitas Islam Bandung;2011.
  7. He H, Ye J, Zhang X, Huang Y, Li X, Xiao MA. Locust bean gum as hard capsule gelling agent. Carbohydr Polym.2017;175:417-424.
  8. Ansel HC. Pengantar bentuk sediaan farmasi Edisi ke-4. Jakarta: UI Press;1989.
  9. Atma Y, Hisworo R. Gelatin extraction from the indigenous pangasius catfish bone using pineapple liquid waste. Indonesian Journal of Biotechnology. 2017;22(2):86–91.
  10. Ward AG, Courts A. The science and technology of gelatin. New York: Academic Press;1977.
  11. Wardhani DH, Esti R, Ghozi TA, Heri C. Characteristics of demineralized gelatin from lizardfish (saurida spp.) scales using NaOH-NaCl solution. Jurnal Bahan Alam Terbarukan. 2017;6(2):132-142.
  12. Pertiwi M, Yoni A, Apon ZM, Rizkia M. Karakteristik fisik dan kimia gelatin dari tulang ikan patin dengan pretreatment asam sitrat. Jurnal Aplikasi Teknologi Pangan. 2018;7(2):83-91.
  13. Istiqlaal, S. Karakteristik gelatin tulang ikan tuna dengan perendaman cuka lontar dari Nusa Tenggara Timur. JPHPI. 2018;21(3):443-450.
  14. Masrukan PY, Santoso U. Pengaruh konsentrasi asam klorida dan lama perendaman terhadap sifat fisik dan kimia gelatin tulang ikan tuna (thunnus albacare). AGOTECH2016;1(1):34-42.
  15. Junianto, Kiki H, Ine M. Karakteristik cangkang kapsul yang terbuat dari gelatin tulang ikan. Jurnal Akuatika Indonesia. 2013;4(1):46-54.
  16. Gugun H, Eko ND, Laras R. Karakteristik gelatin tulang ikan nila dengan hidrolisis menggunakan asam fosfat dan enzim papain. JPHPI. 2016;19(1):69-78.
  17. Otto AW, Titi S, Sumardianto. Pengaruh lama perendaman naoh pada proses penghilangan lemak terhadap kualitas gelatin tulang ikan nila (oreochromis niloticus). Jurnal Pengolahan dan Bioteknologi Hasil Perikanan. 2015;4(2):25-32.
  18. BSN. Mutu dan Cara Uji Gelatin Standar Nasional Indonesia (SNI) 06-3735-1995. Jakarta: Dewan Standarisasi Nasional;1995.
  19. Nurul AG, Sarbon NM. Effects of pH on functional, rheological and structural properties of eel (monopterus sp.)skin gelatin compared to bovine gelatin. International Food Research Journal. 2015;22(2):572-583.
  20. Mardawati E, Sugandi H, Kayaputri IL, Cahyana Y, Wira DW, Pujianto T, et al. Study and characterization of powder mackerel (scomberomorus commerson) bone gelatin through hydrolysis of hydrochloric acid. AIP Conference Proceedings; 2018 Februari 9; Bandung, Indonesia. Indonesia: Universitas Padjadjaran; 2018.
  21. Glicksman M. Gum technology in food industry. New York: Academic Press.1969.
  22. Firlianty IR. Physico-chemical characterization and skin gelatin rheology of four freshwater fish as alternative gelatin source. AACL Bioflux. 2016;9(6):1196-1207.
  23. Rosida R, Lia H, Dwi A. Pemanfaatan limbah tulang ikan kambing-kambing (abalistes stellaris) sebagai gelatin menggunakan variasi konsentrasi CH3COOH. Aquatic Sciences Journal. 2018;5(2):93-99.
  24. Candra S, Titi S, Sumardianto. Perbedaan penggunaan konsentrasi larutan asam sitrat dalam pembuatan gelatin tulang rawan ikan pari mondol (himantura gerrardi). Jurnal Pengolahan dan Bioteknologi Hasil Perikanan. 2015;4(2):106-114.
  25. Rahayu F, Fithriyah NH. Pengaruh waktu ekstraksi terhadap rendemen gelatin dari tulang ikan nila merah. Prosiding Seminar Nasiomal Sains dan Teknologi; 2015 November 17; Jakarta, Indonesia. Indonesia: Universitas Muhammadiyah Jakarta;2015.
  26. Gunawan F, Suptijah P, Uju. Ekstraksi dan karakterisasi gelatin kulit ikan tenggiri (scomberomorus commersonii) dari Provinsi Kepulauan Bangka Belitung. JPHPI. 2017;20(3):568-581.
  27. Iqbal MC, Anam AA, Ridwan. Optimasi rendemen dan kekuatan gel gelatin ekstrak tulang ikan lele dumbo (clarias gariepinus sp.). Jurnal Teknosains Pangan. 2015;9(4):8-10.
  28. Idiawati N, Maulida R, Arianie L. Pengaruh konsentrasi asam klorida pada ekstraksi gelatin dari ikan tulang tenggiri. Jurnal Sains dan Teknologi Kimia. 2014;5(1):1-9.
  29. Puspawati NM, Simpen IN, Suciptawati NLP. Karakteristik sifat fisiko kimia gelatin halal yang diekstrak dari kulit ayam broiler melalui variasi suhu. Jurnal Kimia. 2014;8(1):127–136.
  30. Suptijah P, Indriani D, Wardoyo SE. Isolasi dan karakterisasi kolagen dari kulit ikan patin (pangasius sp.). Jurnal Sains Natural Universitas Nusa Bangsa. 2018;8(1):8-23.
  31. Tuslinah L, Wulandari WT, Ruswanto. Isolasi dan karakterisasi gelatin dari kulit ikan lele (clarias gariepinus) dan tulang ikan gurame (osphronemus gourami, lac) sebagai limbah. Jurnal Farmasi Galenika2019;6(1):1-10.
  32. Bhernama BG, Nasution RS, Nisa SU. Ekstraksi gelatin dari tulang ikan kakap putih (lates calcarifer) dengan variasi konsentrasi asam HCl. Jurnal Sains Natural Universitas Nusa Bangsa. 2020;10(2):43-54.
  33. Saputra RH, Widiastuti I, Supriadi A. Karakteristik fisik dan kimia gelatin kulit ikan patin (pangasius pangasius) dengan kombinasi berbagai asam dan suhu. Jurnal Teknologi Hasil Perikanan. 2015;4(1):29-36.
  34. Baehaki A, Lestari SD, Romadhoni AR. Protein hydrolysis from catfish prepared by papain enzyme and antioxidant activity of hydrolyzate. JPHPI. 2015;18(3):108-118.
  35. Samosir AS, Idiawati N, Destiarti L. Ekstraksi gelatin dari kulit ikan toman (channa micropeltes) dengan variasi konsentrasi dari asam asetat. Jurnal Kimia Khatulistiwa. 2018;7(3): 104-108.
  36. Pradarameswari KA, Zaelani K, Waluyo E, dan Nrdiani R. The physico-chemical properties of pangas catfish (pangasius pangasius) skin gelatin. IOP Conf Ser:Earth Environ Sci. 2017;137:1-8.
  37. Rachmania RA, Nisma F, Mayangsari E. Ekstraksi gelatin dari tulang ikan tenggiri melalui proses hidrolisis menggunakan larutan basa. Media Farmasi. 2013;10(2):18–28.
  38. Permata Y, Widiastri F, Sudaryanto, Anteng A. Gelatin dari tulang ikan lele (clarias batrachus): pembuatan dengan metode asam, karakterisasi dan aplikasinya sebagai thickener pada industri sirup. Jurnal Ilmiah Widya Teknik. 2016;15(2):146-152.
  39. Yenti R, Nofiandi D, Fithriyah R. Pengaruh variasi konsentrasi asam asetat terhadap kuantitas gelatin dari kulit ikan sepat rawa (trichogaster trichopterus) kering dan karakterisasinya. Scientia. 2016;6(1):36-43.
  40. Hafidz. Pembuatan gelatin halal dari tulang ikan bandeng (chanoschanos forskal) (sebagai alternatif pembuatan gelatin halal) (disertasi). Malang: UIN Malang; 2011.
  41. Huda WN, Atmaka W, Nurhartadhi E. Kajian karakteristik fisik dan kimia gelatin ekstrak tulang kaki ayam, dengan variasi lama perendaman konsentrasi asam. Jurnal Teknosains Pangan. 2013;2(3):70-75.
  42. Trilaksani W, Nurilmala M, Setiawati IH. Ekstraksi gelatin kulit ikan kakap merah (lutjanus sp.) hasil proses perlakuan asam (disertasi). Bogor: IPB; 2012.
  43. Dewi R, Wardana ING, Hamidi N. Pengaruh daya penyinaran gelombang mikro terhadap karakteristik pembakaran droplet minyak jarak pagar. jurnal rekayasa mesin. 2012;3(2):305–316

About Majalah Farmasetika

Majalah Farmasetika (ISSN : 2686-2506) di situs ini adalah Majalah Farmasetika Edisi Jurnal Ilmiah yang merupakan jurnal farmasi di Indonesia SINTA 3 berbentuk artikel penelitian, artikel review, laporan kasus, komentar, dan komunikasi penelitian singkat di bidang farmasetika. Edisi jurnal ilmiah ini dibuat untuk kepentingan informasi, edukasi dan penelitian kefarmasian.

Check Also

Review Sinergisitas Kombinasi Polimer Alami Serta Pemanfaatan dalam Formulasi Obat

Majalah Farmasetika, 6 (5) 2021, 436-461 https://doi.org/10.24198/mfarmasetika.v6i5.35935 Artikel Review Download PDF Viviane Annisa1,*, Teuku Nanda …

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *